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The fluid flow induced by a cascade of circular cylinders which oscillates harmonically 
in an unbounded, incompressible, viscous fluid which is otherwise at rest is investigated 
both numerically and experimentally. Attention in this paper is mainly concentrated on 
the induced steady streaming flow which occurs when the ratio of the amplitude of the 
oscillation of the cascade to the size of the cylinder, E ,  is very small. The leading-order 
flow is then governed by the steady Navier-Stokes equations. In order to solve these 
equations numerically we first generate numerically a grid system using the boundary 
element method and then use a finite-difference scheme on the newly generated 
rectangular grid system. Numerical results show that for small values of the streaming 
Reynolds number R, there are four recirculating flows of equal strength around each 
circular cylinder of the cascade. At large values of R, symmetry breaks down and 
numerical solutions are found for asymmetrical flows. Numerically, a critical value of 
R,, R,, say, is identified such that the flow is symmetrical when R, < R,, and 
asymmetrical when R, > R,, and these results are in reasonable agreement with 
experimental results, which are also presented in this paper. 

1. Introduction 
It is well known that when a solid body performs small-amplitude, high-frequency, 

harmonic oscillations in a viscous fluid which is otherwise at rest there is, in addition 
to the fluctuating component of the flow, a time-independent streaming flow which is 
induced due to the action of the Reynolds stresses and the Stokes layer which forms 
on the solid surface. With different combinations of the Reynolds number, R( = abd/u, 
where a is the amplitude of the oscillation, d a typical size of the body, b the frequency 
of oscillation and u the kinematic viscosity of the fluid), and the parameter which 
measures the relative amplitude of the oscillation of the motion to the size of the body, 
E( = a/d),  three different flow regimes have been identified, namely regimes with no 
boundary layers, one boundary layer and two boundary layers. 

When the amplitude of the oscillation is very small and, at the same time, the 
frequency of the oscillation is very high, then if the streaming Reynolds number, 
R,( = eR), is O( 1) the steady streaming flow outside the Stokes layer induced by the 
oscillating body is governed by the full steady Navier-Stokes equations with the 
streaming Reynolds number occurring as the parameter. The importance of the 
streaming Reynolds number was first recognized by Stuart (1963). When R, %- 1 the 
induced streaming takes place in a boundary-layer region very close to the body surface 
but within which the Stokes layer is embedded. For a circular cylinder Stuart (1966) 
conjectured that these boundary layers ultimately collide and emerge as a jet-like flow 
along the axis of oscillation. Davidson & Riley (1972) demonstrated both numerically 
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and experimentally the existence of such streaming boundary-layer flows. Using outer 
and inner expansion methods Riley (1965, 1967) and Haddon & Riley (1 979) (also see 
Wang 1967) obtained solutions for an oscillating circular cylinder, either in an 
unbounded fluid or in a finite domain with an outer boundary which is cylindrical in 
shape, over a wide range of parameters and these results show good agreement with the 
experimental work of Bertelsen, Svardal & Tjotta (1973) and Bertelsen (1974). With the 
recently renewed and growing interest in oscillatory viscous flows, Tatsuno & Bearman 
(1990) have experimentally investigated flow structures over a wide range of parameters 
and identified eight flow regimes according to different parameters, whilst Stansby & 
Smith (1991) investigated numerically the viscous forces on a circular cylinder in 
orbital flow for small values of e and low frequency and their numerical results, for very 
small values of E ,  compared well with those they obtained using the outer and inner 
expansion method. 

Historically most of the work on oscillating bodies has been performed for circular 
cylinders. The axisymmetric geometry of a circular cylinder allowed researchers to 
simplify the boundary value problem and produce solutions that would be difficult to 
determine for other geometries. Recently there have been several investigations 
reported in which the bodies take other shapes and in particular when sharp corners 
exist and hence singularities occur in the flow field. Irani (1982) and Pattani & Olson 
(1987, 1988) used the finite element method to investigate the streaming flow initiated 
by an oscillating square cylinder. Taking advantage of the conformal mapping 
technique, Kim & Troesch (1989) were able to solve, using a finite-difference method, 
the streaming flow between two concentric cylinders where the inner square cylinder 
performs harmonic oscillations and the outer cylindrical cylinder is at rest. Tabakova 
& Zapryanov (1982) and Zapryanov, Kozhoukharova & Iordanova (1988) investigated 
the flow fields induced by two circular cylinders, which may be of different radii, which 
oscillate in a direction which is (i) parallel, or (ii) perpendicular, to the plane of the axes 
of the cylinders. The effect of the cylinders hydrodynamic interaction on the steady 
streaming flow has been studied analytically at high values of the frequency of 
oscillation by the method of matched asymptotic expansion. Experimentally 
Williamson (1985) has investigated the flows induced by two oscillating cylinders of the 
same radii in two situations, namely when the flow is induced by two circular cylinders 
oscillating in a direction which is (i) perpendicular, or (ii) at 45" to the plane of the 
axes of the cylinders, but the ratio of the amplitude of oscillations to the diameter of 
the bodies was O(1). 

For many-body problems Ingham, Tang & Morton (1990) have examined both 
numerically and experimentally the steady two-dimensional flow through a cascade of 
normal flat plates. This work was extended by Ingham & Yan (1989) and Ingham, Yan 
& Morton (1992) to the situation when the cascade harmonically oscillates but the 
amplitude of the oscillation is of the same order of magnitude as the size of each plate 
of the cascade and the frequency of the oscillation was relatively small, i.e. when 6 ,  R,  
Rb( = R/e = b2d/v), and R, are O(1). Further, Ingham & Yan (1992) assumed that the 
amplitude of the oscillation was very small in comparison with the dimension of the 
oscillating body, i.e. e 4 1, and the frequency of oscillation was not too high, or more 
precisely R, = 0(1), and studied numerically the streaming flow due to the oscillation. 
They found that the direction of the streaming flow is along the axis of the oscillation 
and towards the body. 

In this paper we numerically investigate the flow induced by a cascade of circular 
cylinders which performs harmonic oscillations with very small amplitude (e -g 1) and 
has a large frequency (i.e. R, 2 O( 1)) in an unbounded, incompressible fluid which is 
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FIGURE 1 .  The overall cascade geometry, 

otherwise at rest. Consistent with the early theories, the leading-order unsteady outer 
flow is given by the unsteady velocity potential and this flow is determined using a 
conformal mapping technique which was performed numerically by using grid 
generation methods (Thompson, Thames & Mastin 1974). Given the tangential 
velocity next to the body then these inner boundary-layer equations may be solved. The 
O(s) outer flow may be determined and this consists of an unsteady component and a 
steady streaming flow. In this work we use a specialized finite-difference scheme to 
solve for the steady streaming flow and different kinds of boundary conditions are 
employed to see their influence on the solution. It is observed that when the streaming 
Reynolds number is small then the outer steady streaming flow around each cylinder 
of the cascade is similar to that in the case of one oscillating circular cylinder, whilst 
different phenomena are observed when this Reynolds number is increased. As the 
Reynolds number increases then the symmetry of the streaming flow breaks down, i.e. 
a bifurcation occurs at a critical value of R,, R,, say, and we have shown, numerically, 
for E 4 1 that 8 < R,, < 9. It is well known that this kind of breakdown of symmetry 
may be due to the instability of the flow at high values of the Reynolds number (see 
for example Sobey & Drazin 1986 and Fearn, Mullin & Cliffe 1990). 

An experimental investigation has also been performed for the fluid flow induced by 
an oscillating cascade of circular cylinders with E 4 1 and the typical size (diameter) of 
the cylinders being of the same size as the gap width between the cylinders. At small 
values of the streaming Reynolds number the steady streaming flow is symmetrical 
whilst at large values of R, the flow becomes asymmetrical and the experimental results 
compare well with the present numerical calculations. 

2. Governing equations and boundary conditions 
Mathematically the fluid flow induced by the harmonic oscillation of an infinite 

cascade of circular cylinders has been investigated. This cascade consists of an infinite 
number of circular cylinders of uniform diameter d whose axes occupy the plane 
x* = 0 at time t* = 0 with each axis at y* = 2 k 9 ,  where k = 0, i 1, k 2, ... (see 
figure 1). 

The cascade oscillates harmonically and perpendicular to the plane of the cascade in 
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FIGURE 2(u-d). For caption see facing page. 

an unbounded, incompressible fluid which is otherwise at rest. The displacement of the 
cascade is in the x*-direction and is given by 

s ( t * )  = a sin (bt*). (2.1) 
Taking d, b-l and U( = ab) as the length, time and velocity scales and using 
perturbation ‘inner ’ and ‘ outer ’ expansion techniques then the governing non- 
dimensional equations for the O(e) outer streaming flow, with the coordinate system 
fixed in the cascade and in terms of the streamfunction and vorticity. can be written as 
(see for example Riley 1967) 

-- a(w,@) 1 - -vv2w,  
a(x,Y) R, 
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FIGURE 2. Different solution domains. (a) DMO, (b) transformed DMO, (c) DM1 and DM4, ( d )  
transformed DM1 and DM4, (e) DM2, cf) transformed DM2, (g) DM3, (h) transformed DM3. 

V'$ = - w ,  (2.3) 
where $ and w are the U(E) steady streamfunction and vorticity, respectively. 
Equations (2.2) and (2.3) must be solved subject to the following boundary conditions : 

$(x, y : X' + ( y  f 2k.9)' = 0.5') = 0, (2.5) 

(2.6) 

where k is an integer, s and n are the variables along and normal to the surface of the 

3 0, w + O ,  for all y as x+O, 
aY 
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body, u, is the tangential velocity along the surface of thebody and up is the potential 
tangential velocity along the surface of the body due to the cascade of circular 
cylinders, see Riley (1967). 

Mathematically one would expect the flow to have several symmetries and hence a 
numerical solution should only be sought in the region 0 < x < + co, 0 6 y < L,  see 
figure 2(a) .  However, experimentally we observe that above a critical value of the 
Reynolds number the fluid flow breaks these symmetries and hence numerical results 
have been obtained in solution domains which invoke other symmetries; we will return 
to these flows in $4 .  

In order to solve the problem described by (2.2)-(2.6) we first transform the solution 
domain of the problem in the (x, y)-plane onto a simple domain in a new computational 
plane and then determine up. 

3. Grid generation and potential velocity up 
Owing to the complexity of the physical domain of the problem, we transform it 

onto a simpler one. In general one can use the following transformation (see 

(3.1) 
Thompson et al. 1974): 

(3.2) 
to transform the domain SZ, in the (x, y)-plane onto domain SZp in the new ( X ,  Y )  plane 
(where the functions P and Q are arbitrary functions which can be used to control the 
density of the grid lines). The problem is that, in general, transformations (3.1) and 
(3.2) are not conformal so some substantial changes will be introduced into the 
governing equations and the potential surface velocity may be difficult to obtain. 
However, if we take P = Q = 0 then (3.1) and (3.2) reduce to 

v2x = 0, (3 .3 )  
V'Y = 0,  (3.4) 

and, subject to some appropriate boundary conditions, (3.3) and (3.4) may become a 
conformal transformation and the velocity up on the surface of the body may be 
obtained. 

Clearly the physical domain of the problem described by (2.2)-(2.6) is infinite in both 
the x- and y-directions. Because the solution domain is periodic in the y-direction we 
would expect to have to solve the problem in the domain as shown in figure 2(a ) ,  as 
explained earlier. Thus (3.3) and (3.4) have to be solved subject to the following 
boundary conditions : 

v2x = P ( X ,  Y ) ,  

V2 Y = Q ( X ,  Y ) ,  

- = 0 when x2+y2 = 0.5'; 
an 

0.5 < x < + 03, y = 0;  or 0 6 x < + 03, y = L,  
ax 

(3.5a) 

-- - 1  w h e n x = + c o ,  O < y < L ,  (3.5 b) 
an 
ax 

X = 0 when x = 0, 0.5 6 y d L,  (3.5c)  
Y = 0 when x2+y2 = 0.52; 0.5 d x < + co, y = 0,  (3.6a) 

Y = y  w h e n x = + c o ,  0 6 y < L ,  (3.6b)  
Y = L  w h e n O d x < + c o ,  y = L ,  ( 3 . 6 ~ )  

= 0 when x = 0, 0.5 < y d L,  ( 3 . 6 d )  
ay  
an 
- 
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where L = 9 / d .  Equations (3.3)-(3.6) now define a conformal transformation from 
the (x,y)-plane to the ( X ,  Y)-plane. The governing equations (2.2) and (2.3) become 

Vz+ = -w/J(X, Y ) ,  (3.8) 

where J(X, Y )  is the inverse Jacobian of the transformation. 
We now solve (3.3)-(3.6) to obtain A', Y,  aX/an and aY/an on aQp and up on the 

surface of the body using the boundary element method (BEM). The corresponding 
inverse problem is solved in the ( X ,  Y )  plane to obtain x(X, Y )  and y (X ,  Y )  and hence 
J(X, Y ) (  = l/(J(x,y)). In this way we can obtain the value of J(x,y) at any given point 
( X ,  Y ) .  

It is noted that (3.3) and (3.4) are actually two Laplace equations and only one of 
them has to be solved, the solution of the other equation then being obtained by using 
the Cauchy-Riemann equations. Here we solve (3.4) using the linear boundary element 
method (see for example Manzoor 1984) subject to the boundary conditions (3.6) and 
at the same time obtain the tangential fluid velocity on the cylinder due to the potential 
flow induced by the motion of the cascade. 

For viable computations we must limit the length of the computational region (say 
0 < x < xR) without introducing significant errors into the results obtained numerically 
in this region. Therefore the finite value x = xR at which boundary condition (3.6b) 
(also (2.6)) must be applied should be very large. 

Given xR and the mesh size h, the boundary aQp is divided into N segments: 
N = N ,  + N , + N , + N 4 + N 5 ,  with N ,  = int ( ( in) /N3) ,  N ,  = int ((xE-0.5)/h), N3 = int 
(Llh),  N4 = int (xR/h) and N5 = int ( (L-OS) /h)  being the number of segments on AB, 
BC, CD, DE and EA (see figure 2a), respectively, then the algebraic system of 
equations which corresponds to the problem (3.4) and (3.6) may be written as 

N 

C EiiZi = B(i), i = 1,2, ..., N ,  
j= 1 

(3.9) 

where 

{Z,}f" = { Yj}F-N6 u { Y,}:-N6+l and all of the elements of E and G are known. The 
system of equations (3.9) can then be solved by the standard Gaussian-elimination 
method. The values of X,  and X i  on aQ, can now be calculated by using the 
Cauchy-Riemann equations 

(3.10) 

The solution Y represents the potential flow due to the cascade and therefore up can 
be obtained from 

up = -a y/an. (3.11) 

The problem now is to find an appropriate value of xR such that the BEM gives a 
solution of (3.4) and (3.6) to a high degree of accuracy. In all the calculations presented 
in this paper it is found that xR = 15 is sufficiently large, since any further increase in 
this value only results in changes in the value of up of less than 1 YO. 

6 F L M  2 5 2  
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On knowing all the values of X, X’, Y and Y’ we can now use them to calculate the 
corresponding values of x ,  x’, y and y’ on aQ2, in the ( X ,  Y)-plane. Actually x = x ( X ,  
Y )  and y = y(X, Y) in the domain as shown in figure 2(b)  satisfy the Laplace equations 

VZX = 0, (3.12) 

vzy = 0. (3.13) 

Knowing the values of x ,  x’, y and y’ on aQP, the solutions of (3.12) and (3.13) may 
be obtained by using the Green’s integral formulae and hence J(x,  y) = l / J ( X ,  Y )  can 
be obtained at any point (X, Y )  in the (X, Y)-plane that is required when solving (3.7) 
and (3.8). 

4. Numerical procedure 
4.1. Boundary conditions 

Apart from the boundary conditions (2.4) and (2.5) we need to determine the vorticity 
on the surface of the body, i.e. for (XI < X,, Y = O +  in the (X, Y)-plane, see figure 
2(b). Using the Taylor expansion method at a boundary point B then, for the first 
internal point from B, say I, it can be shown that 

(4.1 a) 

It should be noted that (4.1 a) cannot be used at the points ( x B ,  yB) = (0.5,O) and 
(-0.5,O) owing to the singularity of the transformation (3.4)-(3.6). However, bearing 
in mind that both the streamfunction and the vorticity are not singular at these points, 
then the values of the vorticity at these points may be obtained using an 
(r,  0) coordinate system. Thus at (Ig, @,) = (0.5,O) and (0.5, x), which correspond to 
(xB,  yB) = (0.5,O) and (-0.5,O) in the ( x ,  y)-plane, respectively, the vorticity is given 
by 

6r2w,, 6r2( 1 + k) wI 
k 

5 (4.1 b) 
6$B - 6$, + 26r(3 - 36r + 46r2) u, + ~- 

k(k+ 1 )  
OB = 

where I1 is the second internal point from the boundary point B, (IB, 6 ~ )  = (0.5,O) or 
(0.5, x)), Sr = rI-rB and k = (rI1-rB)/Sr.  

Owing to the symmetry of the problem, in addition to the boundary conditions 
(2.4)-(2.6) and (4.1) the following symmetrical boundary conditions are applied : 

DMO : Mathematically we can enforce a set of symmetrical boundary conditions 
about both x = 0 and y = 0 and then take the solution domain as shown in figure 2(a)  
due to the symmetry of the physical domain, i.e. 

when x 2 0.5, y = 0 
and when 0 < x < xE,  Y = L, 

$ = w = O  (4 .2a)  

$ = 0 when x = 0, 0.5 < y < L. (4.2 b) 

However, the physical solution of the problem may not be symmetrical for large 
values of R,. Indeed, as will be shown in our experimental results (see § 6 ) ,  the streaming 
flow is symmetrical when the streaming Reynolds number R, is small and asymmetrical 
when R, is large. This breakdown in symmetry of the flow is similar to that obtained 
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in the two-dimensional sudden-expansion channel flow which becomes asymmetrical at 
about R = 40, see Fearn et al. (1990). In order to predict the experimentally observed 
solutions then the boundary condition (4.2) must be relaxed. Therefore some different 
asymmetrical boundary conditions for the possible solution remains as shown in figure 
2 have been considered, namely: 

DM1 : We relax the symmetrical boundary conditions about y = 0 and solve the 
problem in the solution domain DMI (see figure 2c) subject to the following boundary 
conditions : 

(4.3 a) 
(4.3 6) 

( + l y - L  = (+ly--L when 0 < x < xR, 

w l y - L  = w ( y - -L  when 0 < x < xR,  

(4.3 c) 

(4.3 d) 

The vorticity on 0 < X < X, and Y = 0 + is given by (4.1 a) whilst on 0 < X < X, 
and Y = 0 - , see figure 2 (d), the vorticity is given by 

wB-vI  + 6hy us 1 ( 3 B - h t  J(XB,YB) wI 
wB = (4.3 e) ht [h. (T) aJ(x, Y) + 2J(xB,  YB)] 

B 

DM2: We now relax the symmetry conditions about x = 0 and y = 0 and therefore 
we have to solve the governing equations (2.2) and (2.3) in the solution domain as 
shown in figure 2(e). Hence the boundary conditions (4.34 and (4.36) must be 
supplemented by the boundary conditions 

( + I , - L  = when x L  < x < xR, 
OJ l y - ~  = w l y - - L  when x L  < x < xR. 

(4.44 
(4.4 b) 

The boundary condition for the vorticity on the surface of the body, i.e. on 
- X, < X < X, and Y = 0 + in the (X, Y )  plane, see figure 2 0, is given by (4.1 a), whilst 
on -X, < X < X, and Y = 0- the vorticity is given by (4.3e). 

DM3 : In this case we assume, again, that the flow is periodic in the y-direction but 
with a period of symmetry four times that of the fundamental solution. Hence we solve 
the governing equations (2.2) and (2.3) in the region described by figure 2(g). The 
boundary conditions (4.2) then have to be supplemented by the following boundary 
conditions : 

(4.54 
(4.5b) 

Yl =-Yl when -L < y < -0.5 or 0.5 < y < L, (4.5~)  

& I  - -& I  - (4.5d) 

The boundary conditions for the vorticity on the surface of the bodies, i.e. on 
0 < X <  X, and Y = 0+,  Y = 2L+ are given by (4 .1~)  whilst on 0 < X <  x b  and 
Y = 0-, y = 2L-, see figure 2(h), the vorticity is given by (4.3e). 

(+ l y - 3 L  = $ ly--L, when 0 < x < xR, 
w l y - 3 L  = w l y - - L ,  when 0 < x < xR, 

ax ( 0 , Y )  ax (0,2L-Y) 

ax (0.Y) ax ( 0 , 2 L - Y )  

when - L  < y < -0.5 or 0.5 < y < L. 

6 - 2  
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DM4 : In DM 1 we have used antisymmetrical boundary conditions about x = 0 and 
periodic boundary conditions on y = - L  and y = L. In this section we apply the 
following boundary conditions to the solution domain DM 1,  see figure 2 (c)  : 

(4.6a) 
(4.6 b) 
(4.6 c)  
(4.6 d )  

and the boundary conditions for the vorticity on the surface of the cylinder are those 
used in DM1 and are given by ( 4 . 1 ~ )  and (4.3e). 

Other less severe symmetries can be considered but this will increase the size of the 
computational domain and hence the computational time. Therefore such flows have 
not been investigated. 

If the solution at a given value of R, is symmetrical about x = 0 then the solution 
obtained by solving in domain DM1 will be the same as that obtained when using 
domain DM4. 

4.2. Numerical procedure 
The numerical procedure used in this paper is as follows: 

+ lYpL = 9 ly--L when 0 d x 6 xR, 
w l y = L  = w ly--L when 0 d x 6 xR, 

+ l ( x , y ,  = - + l ( - x , y )  when - L  d y d -0.5, 0.5 < y < L, 
wI(z,y) = -" l ( - z ,Y j  when - L  < y d -0.5, 0.5 < y d L,  

(a)  Take xR = 15 and obtain u, (see $3); 
(b) solve (3.3) and (3.4) subject to the boundary conditions (3.5)-(3.6) on a52, and 

then solve the inverse problem (3.12) and (3.13) on a52, by using the BEM (see $3); 
(c) use Green's integral formula to calculate x = x ( X ,  Y )  and y = y (X ,  Y )  and then 

obtain J ( x , y )  in the ( X ,  Y)-plane; 
( d )  solve (3.7) and (3.8) according to the numerical scheme as described below. 
Following Ingham & Yan (1989), in order to reduce the number of grid points in the 

X-direction and at the same time maintaining the number of grid points near X = 0 (i.e. 
near the cylinder) we introduce the following transformation in the X-direction : 

(4.7) I when 1x1 d X ,  
when X > X ,  6 = X ,  + In [ 1 +  A,(X- X,)] (" - X, - In [ 1 - A,(X+ X,)] when X < - X,,, 

where Xb is the X-component of the image of B (see figure 2) in the ( X ,  Y )  plane and 
A ,  is a constant such that the mesh sizes in the X-direction on both sides of X = X, are 
the same for a given mesh size in the (-direction of the (6, Y) plane. 

The governing equations (3.7) and (3.8) now become: 

where X ( t )  is the inverse function of (4.7) and 

(4.10) 

(4.1 1) 

E(@ = A ,  exp (- (t - X,)) when 6 > X,, (4.12) 
E ( 0  = A,exp((+X,) when 5 < -Xb, (4.13) 
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and the upper sign in (4.8) and (4.9) occurs when 6 > Xb whilst the lower sign occurs 
when < - Xb. 

A modified central-difference scheme (see Dennis & Hudson 1978) which is similar 
to that used by Ingham et al. (1992) for the unsteady cascade flow is used to discretize 
(4.8) and (4.10). Taking h, and h, to be the mesh sizes in the 6- and Y-directions, 
respectively, and using the subscripts 0, 1,2, 3 and 4 to denote typical grid points (ih6, 
jh,), ((i+ 1 )  hS,jhy), (iht, ( j +  1 )  hy) ,  ((i- 1 )  ht,jhy), (ihE, ( j -  1 )  h,), respectively, then the 
finite-difference representation of  (4.8)-(4.11) can be written as 

c1 0 1  +c,w, + c3 w3 + c, wp -cow0 = 0, (4.14) 

b, *I + b2 $2 + b3 $3 + b, $4 - b, $0 + hi h; wo/J(X(to>, Y,) = 0, (4.15) 
where 

and 

hi{ 1-ih, RsEo(!$) 0 +ih;R,2E;@):}, 

hi { 1 - ah, R ,  g), + Qh; R: ($);}, 
co = c,+c,+c3+c, 

14 Q x,, 

b2 = 6, = hi, bo = b,+b,+b3+6,. 

The matrices associated with the set of finite-difference equations (4.14) and (4.15) are 
diagonally dominant under all circumstances and therefore an over-relaxation iterative 
scheme may be employed in order to reduce the number of iterations required for 
convergence. 

5. Numerical results 
Calculations have been obtained for several values of the blockage ratio, d / 2 Y ,  

from 0.25 to 0.75 which are 0(1), and they all show very similar trends. In order to be 
able to compare with the experimental data we have concentrated in this paper on 
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FIGURE 3 .  The streamlines for the outer streaming flow obtained by using DMO. 
(a) R, = 0.636, (b) R, = 10, (c) R, = 35, (d)  R, = 70. 

producing detailed results only for L = 1. It has been found that xR = 10 is sufficiently 
large for R, < 15, whilst xR = 15 has to be used for R, > 15 and xL = -xR has been 
taken when a solution is required in x c 0. Mesh sizes h, = 1/20 and h, = X,/25 or 
h,  = 1/40 and h, = XJ50 have been used depending on the value of the streaming 
Reynolds number. In order to reduce the complexity of the computer program it is 
convenient to take the mesh sizes on both sides of the lines X = & X, to have the same 
magnitude and hence the constant A, in (4.7) is determined according to 

h,=ln(l+A,h,). (5.1) 
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FIGURE 4. Distance between the centres of the recirculations and the axis of the nearest cylinder. 

For R, 6 15 it is found that the results obtained with h, = Xb/25 and h ,  = 1/20 are not 
significantly different from those obtained with h, = X,,/50 and h ,  = 1/40. So the 
results shown here for R, < 15 have been obtained with the larger mesh whilst the 
results for R, > 15 have been obtained using the finer mesh. It has been found that 
further decreasing the mesh size for R, > 15 results in solutions graphically 
indistinguishable from those obtained with h, = Xb/50 and h, = 1/40. 

5.1. Boundary conditions DMO 
Numerical results have been obtained for values of R, up to 100. Figure 3 shows the 
O(e) outer steady streamlines for R, = 0.636, 10, 35 and 70, using the solution domain 
and boundary condition described as DMO in $4.1. The value of R,  = 0.636 was 
chosen as experimental results have been obtained for this value of the Reynolds 
number, see $6 (experimental data have also been obtained for R, = 2.54 and 8.9). It 
is found from figure 3 that for e < 1 the O(e) steady-state outer streamlines consist of 
four recirculating regions between each successive cylinder with the direction of the 
flow being along the direction of the oscillations away from each cylinder (i.e. along 
y = 2kL, where k is an integer) at a distance O(1) from the body and towards x = 0 
along y = (2k+ 1) L. The magnitudes of all the recirculations are very weak at large 
distances from the cascade and the general flow structure is very similar for all values 
of R,. However, as the value of R, increases then the centres of these four recirculating 
regions occur at increasing distances from the plane of the axes of the cylinders and the 
strengths of these circulations increase, see figures 3 (b), 3 (c) and 3 ( d ) .  This is because 
more energy is being put into the system as the value of R, increases. Figure 4 shows 
the variation of the minimum distance between the centre of each of the recirculating 
regions and the axis of the nearest cylinder, d,, and the streaming Reynolds number, 
R,. It is observed that, for R, 2 25, d, is almost directly proportional to R, and we find 
that d, x 0.037R, +0.5. Figure 5 shows the vorticity contours for the O(s) steady outer 
streaming flow for R, = 0.636, 10, 35 and 70, respectively, using the solution domain 
and boundary condition described as DMO. It is found that at R, = 0.636 the vorticity 
along the surface of the cylinder is everywhere positive but, as the value of R, increases, 
there develops a region near the cylinder of negative vorticity. 
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(a) R, = 0.636, (b) R, = 10, (c) R, = 35, ( d )  R,  = 70. 
FIGURE 5 .  The vorticity contours for the outer streaming flow obtained by using DMO. 

5.2. Boundary conditions DM1 
Numerical results for the O(e) outer steady streaming flow have been obtained for 
R, = 0.636, 2.54, 5, 6, 7, 8, 9, 10, 10.9, 15, 20,. . . ,60. Figure 6 shows the streamlines 
of the outer streaming flow with R, = 0.636, 2.54 and 10.9 and it is clear that at the 
smaller values of R, the streaming flow is almost symmetrical about both the axes 
x = 0 and y = 0, and the values of the streamfunctions on y = L and y = - L for any 
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FIGURE 6. The streamlines for the outer streaming flow obtained by using DM1. 
(a)  R, = 0.636, (b) R, = 2.54, (c) R, = 10.9. 

value of x are very small. Further, the results at the smaller values of R, are almost 
identical to those obtained by using the boundary conditions described in DMO. 

As the value of R, increases, the symmetry of the numerical results begins to break 
down and the flow becomes asymmetrical. Instead of four recirculations of equal 
strength occurring between any two successive cylinders of the cascade, as there are at 
smaller values of R,,. two of the recirculations become stronger than the other two (see 
figure 6). As a result fluid flows in the y-direction are generated at distances of just over 
one diameter from the cylinders, and the strength of this flow becomes stronger, at a 
given distance from the body, as the value of R, increases but decreases in strength as 
1x1 increases. 

The results indicate that there exists a critical value of R,, R,, say, such that 
8 5 R,, 5 9 for which the flow is symmetrical about both the axes x = 0 and y = 0 for 
R, < R,,, and antisymmetrical for R, > R,, (see figure 6). The induced velocity on 
y = L in the y-direction for R, = 10, 15, 20 and 25 as a function of x is shown in 
figure 7. It has been found that there exists a non-zero y-component of negative vertical 
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FIGURE 7. The vertical velocity at y = 1 as a function of x for R, = 15. 
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FIGURE 8. Bifurcation diagram of the streaming cascade flow (gu). 

velocity for all values of R, and this contrasts with the results obtained for R, c R,, 
where the vertical velocity at y = L is always zero. 

In order to measure the asymmetry of the flow we define the quantities (T, and ( T ~  

such that 

(5.2) 

and (5.3) 

Physically, (T: represents the mass exchange across x = 0 in any interval [2kL - L, 

interval [xL, x,]. As xL and x, tend to - co and + co, respectively, (T: becomes the total 
mass exchange across y = (2k+ 1) L. 

The variations of ( T ~  and uu with R, as obtained using the DMl conditions are shown 
in figures 8 and 9, respectively. It is clear that both rU and uV are identically zero when 
R, 5 8 whilst they become non-zero when R, 2 9, i.e. a bifurcation via the breakdown 
of symmetry occurs when the streaming Reynolds number lies somewhere between 8 
and 9. 

2kL + L] (k = f 1, f 2, .. .) and v: the mass exchange across any h e y  = (2k + 1) L in the 
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5.3. Boundary conditions DM2 
Again, numerical results for the O(E) outer steady streaming flow have been obtained 
for values of R, between 0.636 and 60 as in $5.2. Figure 10 shows the streamlines for 
the outer streaming flow with R, = 0.636, 2.54 and 10.9. It is again clear that the flow 
is almost symmetrical about the axes x = 0 and y = 0 at the smaller values of R, but 
the flow becomes more asymmetrical as the value of R, increases. The critical value for 
the streaming Reynolds number R, was found to lie somewhere between 8 and 9 as was 
the case for the boundary conditions DM1. 

Further the bifurcation diagrams of ( T ~  and (T, for the different values of R, that we 
have investigated are shown in figures 8 and 9, respectively. It is observed that the 
values of both vu and cr, are almost zero when R, 5 8 whilst both of them are non-zero 
when R, 2 9, i.e. the bifurcation via the breakdown of symmetry about both the x- and 
y-axes occurs at about the same value of R, as they did for the boundary conditions 
DM1. 

5.4. Boundary conditions DM3 
Numerical results for the O(E) outer streaming flow have been obtained for R, = 0.636, 
2.54, .... 10.9, .... 60 and it is found that all of the results obtained are similar to those 
obtained when using DM1 and DM2. The critical value for R, was, again, found to be 
between 8 and 9, and no further period-doubling solutions have been found for the 
values of R, that we have investigated. 

The values of quantities vU and (T, as functions of R, are plotted in figures 8 and 9 
and it is observed the results show a very similar tendency to those obtained using DM1 
and DM2. In particular, both uU and ( T ~  are almost identical to those obtained using 
the boundary conditions DM1. This is not surprising since the solutions here are 
periodic in the y-direction with a period of 2L and in this case the boundary conditions 
(4.3) are included in the boundary conditions (4.5) ; therefore the solutions obtained 
here should be identical to those obtained when using the boundary conditions DM1. 

5.5. Boundary conditions DM4 
Numerical results have been obtained for the O(E) outer steady streaming flow for R, 
between 0.636 and 60. It is found from these results that the streaming flow is 
symmetrical about both the axes x = 0 and y = 0 when R, 5 8 and this is consistent 
with the numerical results obtained when using the solution domains DMO, DM1, 
DM2 and DM3 subject to the corresponding boundary conditions. When R, 2 9 the 
streaming flow is no longer symmetrical about the axis y = 0 and two of the four 
recirculation regions around each cylinder become stronger than the other two. In 
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FIGURE 10. The streamlines for the outer streaming flow obtained by using DM2. 
(a)  R, = 0.636, (b) R, = 2.54, (c) R, = 10.9. 

X 

order to show the flow structure in this case the streamlines are plotted for R, = 8, 15 
and 25 in figure 11 where a clear tendency of how the flow structure changes with R, 
can be observed. 

The bifurcation diagrams for ( T ~  and uv as a function of R, are plotted in figures 8 
and 9. The values of are always zero as symmetrical boundary conditions have been 
used on x = 0, and clearly the tendency of (T, is similar to those obtained when using 
the boundary conditions DM1, DM2 and DM3. 

It is obvious from figures 8 and 9 that unless symmetry is enforced by the use of the 
boundary conditions DMO then the streaming flow becomes asymmetrical either about 
x = 0 or y = 0 when R, 2 9. This suggests that a bifurcation has occurred via the 
breakdown of symmetry. It is also noted from figure 8 that there is quite a big 
difference between the bifurcation curves using boundary conditions DM2 and those 
using the others and this suggests that there is a bigger mass exchange through x = 0 
when using DM2 boundary conditions than when using the other boundary conditions. 

Further, once a solution domain is taken which allows for the symmetry to be 
broken then the critical value of the streaming Reynolds number at which the solution 
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FIGURE 11. The streamlines for the outer streaming flow obtained by using DM4. 
(a) R, = 8, (b) R, = 15, (c) R, = 25. 

bifurcates is approximately the same for all the geometries considered in this paper. 
This may be why the breakdown to asymmetric flows is more complicated than that 
of the ‘skew-symmetric’ boundary condition DM1 and why it is impossible to 
postulate which set of boundary conditions may be deemed to be ‘correct’. 

6. Comparisons with experiments 
6.1. Flow visualization experiments 

A general schematic layout of the equipment in the Geophysical Fluid Dynamics 
Laboratory at Monash University that we used is shown in figure 12. The experiments 
were performed in a large rectangular tank of length 2 m and width 0.36 m, filled to a 
depth of approximately 0.20 m with water. Within this tank there was a smaller 
Perspex tank of length 1 m and width 0.14 m, filled with water to a depth of 
approximately 0.12 m. The smaller tank was fixed at about 0.04 m above the bottom 
of the larger tank. The temperature of the water in the outer tank was refrigerated and 
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FIGURE 12. A schematic diagram of the experimental apparatus in the Geophysical Fluid Dynamics 
Laboratory at Monash University, Australia : (a) the cascade, (b) the refrigerated outer tank, (c) the 
inner tank, ( d )  the camera, (e) the illuminated strip of light, (f) a trolley which is free to move 
horizontally (the double arrows indicate the motion is harmonic), (g) the connecting rod and (h) a 
geared-down D.C. permanent magnet motor with a number of fixed displacement cams. 

carefully controlled by having a large recirculation of water in the tank, so that the 
temperature on the boundary of the inner tank may be assumed constant. The water 
in the outer tank was slightly cooled so that there was no loss of heat from either the 
side or the bottom of the small tank. On top of the small tank a sheet of Perspex was 
placed, which was covered with bubble plastic in order for it float. The Perspex was 
painted black in order to reduce the reflection of the light and to increase the contrast 
in the photographs. However, the main aim of the covering of the top of the small tank 
was to reduce water evaporation from the surface, which causes recirculations. As we 
are investigating second-order effects it is absolutely essential that as much care as 
possible is taken in eliminating thermally driven flows even though they are very small. 
Throughout the experiments the temperature in the test tank was taken at numerous 
positions. It was found that typically the temperature in the test tank was position 
independent, being 12.2 "C+O.l "C, whilst the ambient temperature was 19.6 "C and 
the dew point temperature 8.4 "C. The closeness of the temperatures of the small tank 
and the dew point ensures that only a very small amount of evaporation takes place. 
The surface temperature is higher than the sidewall temperature but this just ensures 
that the water is thermally stratified. 

Harmonic oscillations were achieved by using a geared-down D.C. permanent 
magnet motor with a number of fixed displacement cams. From the cam a connecting 
rod is attached to a freely moving trolley which runs on top of the large tank. The 
cylinders were firmly fixed to the trolley such that they are vertical and at right angles 
to the axis of the small tank. The cascade was made from Perspex circular cylinders 
with uniform diameters 0.01 m, separated by uniform gaps of 0.01 m, i.e. L = 1. The 
cylinders were mounted such that the bottom of the tank and the teeth of the cascade 
were about 0.002 m above the bottom of the tank and extended out of the water. This 
configuration minimizes the end effects. 

The visualization was achieved by seeding the entire water with polyester spheres 
used in Dulux emulsion paints. These spheres are coated with titanium oxide and have 
a mean diameter of 17 pm, with only 3 % of the mass of particles having a diameter 
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FIGURE 13. The streamlines from the numerical results for the outer streaming 
flow. (a)  R, = 0.636, (b) R, = 9, (c) R, = 15. 
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FIGURE 14. The experimental results for the outer streaming flow. 
(a) R, = 0.636, (b)  R, = 2.54, (c) R, = 8.9. 
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greater than 30 pm. The specific gravity varies but is generally within about 5 Yo of that 
of water and hence the particles settle out of suspension extremely slowly. It is found 
they stay in suspension long enough for photographs to be taken over a period of about 
ten hours. However, the tank was stirred every four hours when performing the 
experiments. Further the length of time taken between photographing different runs 
varied according to the frequency and amplitude of the previous oscillation. It was 
found in all experiments performed here that if 20 minutes was left between each set 
of runs then the residual motion in the tank was minimal when viewing the flow. 

The marker particles were illuminated using light from good quality projectors with 
slits in their focal planes focused into thin horizontal sheets of light between 0.002 and 
0.005 m thickness in the working section. Two opposed projectors were required to 
obtain records adequately illuminated both upstream and downstream of the cascade 
from either side of the tank, with one projector upstream and one downstream at the 
moment of the record. The recording camera was fixed under the tanks and looked 
vertically down the face of the centre body of the cascade, and the thickness of the light 
sheet in the working section was chosen to illuminate just sufficient particles for a clear 
record in an exposure time which was about 10 times the period of oscillation of the 
cascade. 

6.2. Comparison of numerical results with experiments 
As we observed in $5 the numerical results obtained using the boundary conditions 
DMI, DM2, DM3 and DM4 are similar to each other for all the values of R, that we 
have investigated. The numerical results for the steady streaming flow when 
R, = 0.636, 9 and 15 are shown in figure 13 whilst the experimental results for R, = 
0.636, 2.54 and 8.9 are shown in figure 14 where the values of e for the experimental 
data are 0.025, 0.05 and 0.05, respectively. Clearly the trend of the numerical results 
shows good agreement with the experimental investigations. It can be observed that the 
symmetry of the experimental result for R, = 0.636 is good whilst for R, = 2.54 the 
flow is starting to show signs of symmetry breaking. For R, = 8.9 a breakdown in the 
symmetry is clearly observed from the experimental results and a comparison with the 
numerical results show qualitative agreement. 

It should be noted that it is very hard to obtain exactly symmetrical experimental 
pictures even for very small values of R, and it is extremely difficult to determine 
exactly the critical value of R,, from the experimental work. The discrepancy between 
the experimental and numerical solutions is probably due to (i) the axes of the cylinders 
not being exactly in a plane; (ii) the use of a finite number of cylinders in the 
experimental work; (iii) the effects of the free surface and the bottom of the tank being 
at a finite distance from where the experimental results were obtained; and (iv) the 
value of 6 being finite in the experiments. 

It should be noted that on the photographs shown in figure 14 there is a diagonal 
pattern. This is caused by the use of light sources slanting rearwards to the left and 
forwards to the right ; these produce bright diagonal bands where the marker particles 
are illuminated by both sources and darker bands of roughly half the intensity where 
one beam is obstructed by a tooth of the cascade. 

7. Conclusions 
The O(e) outer steady streaming flow induced by a harmonically oscillating cascade 

of circular cylinders has been investigated both numerically and experimentally. The 
complex physical domain has been conformally transformed onto a rectangular 
solution domain and then the Navier-Stokes equations solved using a specialized 
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finite-difference technique. Various solution domains and boundary conditions have 
been applied in order to solve the problem and it is found that it is not always possible 
to obtain experimentally symmetrical flows for all values of the streaming Reynolds 
number R, although, mathematically, symmetrical flows can always be predicted. The 
numerical results indicate that the boundary conditions on y = kL (k an integer) are 
very important in predicting the observed flow. Numerical results for the flow field 
show a reasonable agreement with those obtained experimentally. 

R E F E R E N C E S  

BERTELSEN, A. F. 1974 An experimental investigation of high Reynolds number steady streaming 

BERTELSEN, A., SVARDAL, A. & TJOTTA, S. 1973 Nonlinear streaming effects associated with 

DAVIDSON, B. J. & RILEY, N. 1972 Jet induced by oscillating motion. J. Fluid Mech. 53, 287-303. 
DENNIS, S. C. R. & HUDSON, J. D. 1978 A difference method for solving the Navier-Stokes 

equations. In Proc. 1st Intl Con$ Numer. Methods in Laminar & Turbulent Flow, pp. 69-80. 
Swansea : Pineridge. 

FEARN, R. M., MULLIN, T. & CLIFFE, K. A. 1990 Nonlinear flow phenomena in a symmetric sudden 
expansion. J.  Fluid Mech. 211, 595-608. 

HADDON, E. W. & RILEY, N. 1979 The steady streaming induced between oscillating circular 
cylinders. Q. J.  Mech. Appl. Maths 32, 265-282. 

INGHAM, D. B., TANG, T. & MORTON, B. R. 1990 Steady two-dimensional flow through a row of 
normal flat plates. J .  Fluid Mech. 210, 281-302. 

INGHAM, D. B. & YAN, B. 1989 The fluid flow induced by an oscillating cascade. In Proc. 6th Con$ 
Numer. Methods in Laminar & Turbulent Flow, pp. 723-733. Swansea: Pineridge. 

INGHAM, D. B. & YAN, B. 1992 Fluid flow induced by a small amplitude harmonically oscillating 
cascade. Acta Mechanica 91, 2746. 

INGHAM, D. B., YAN, B. & MORTON, B. R. 1992 The fluid flow induced by large amplitude 
oscillations of a cascade. Computers Fluids 21, 305-321. 

IRANI, M. B. 1982 Finite element analysis of viscous flow and rigid body interaction. Masters thesis, 
University of British Columbia. 

KIM, S. K. & TROESCH, A. W. 1989 Streaming flows generated by high-frequency small-amplitude 
oscillations of arbitrarily shaped cylinders. Phys. Fluids A 1, 975-985. 

MANZOOR, M. 1984 Heat Flow Through Extended Surface Heat Exchangers. Lecture Notes in 
Engineering, vol. 5. Springer. 

PATTANI, P. G. & OLSON, M. D. 1987 Rigid body-viscous interaction. Intl J.  Numer. Meth. Fluids 

PATTANI, P. G. & OLSON, M. D. 1988 Force on oscillating bodies in viscous fluids. Intl J.  Numer. 
Meth. Fluids 8,  519-563. 

RILEY, N. 1965 Oscillating viscous flows. Mathematika 12, 161-175. 
RILEY, N. 1967 Oscillatory viscous flows, review and extension. J .  Inst. Maths Applics. 3, 419434. 
SOBEY, I. J. & DRAZIN, P. G .  1986 Bifurcations of two-dimensional channel flows. 1. Fluid Mech. 

STANSBY, P. K. & SMITH, P. A. 1991 Viscous forces on a circular cylinder in orbital flow at low 
Keulegan-Carpenter numbers. J.  Fluid Mech. 229, 159-1 71. 

STUART, J. T. 1963 Unsteady boundary layers. In Laminar Boundary Layers (ed. L. Rosenhead), pp. 
347408. Oxford University Press. 

STUART, J. T. 1966 Double boundary layers in oscillating viscous flows. J.  Fluid Mech. 24, 673-687. 
TABAKOVA, S. & ZAPRYANOV, Z. 1982 On the hydrodynamic interaction of two spheres oscillating 

in a viscous fluid -I. Axisymmetrical case. J.  Appl. Maths. Phys. 33, 344-357. 
TATSUNO, M. & BEARMAN, P. W. 1990 A visual study of the flow around an oscillatory circular 

cylinder at low Keulegan-Carpenter numbers and low Stokes numbers. J.  Fluid Mech. 211, 

generated by oscillating cylinders. .I. Fluid Mech. 64, 589-597. 

oscillating cylinders. J.  Fluid Mech. 59, 493-51 1. 

7, 653-695. 

171, 263-287. 

157-1 82. 



Flow induced by oscillating circular cylinders 171 

THOMPSON, J. F., THAMES, F. C. & MASTIN, C. W. 1974 Automatic numerical grid generation of 
body fitted curvilinear coordinate systems for fields containing any number of arbitrary two 
dimensional bodies. J. Comput. Phys. 15, 299-319. 

WANG, C. Y. 1967 On high frequency oscillatory viscous flows. J. Fluid Mech. 32, 55-68. 
WILLIAMSON, C. H. K. 1985 Sinusoidal flow relative to circular cylinders. J.  Fluid Mech. 155, 

ZAPRYANOV, Z., KOZHOUKHAROVA, ZH. & IORDANOVA, A. 1988 On the hydrodynamic interaction 
141-1 74. 

of two circular cylinders oscillating in a viscous fluid. Z. Angew. Muths. Phys. 39, 204-220. 




